If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2=11
We move all terms to the left:
x+x^2-(11)=0
a = 1; b = 1; c = -11;
Δ = b2-4ac
Δ = 12-4·1·(-11)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{5}}{2*1}=\frac{-1-3\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{5}}{2*1}=\frac{-1+3\sqrt{5}}{2} $
| 9X-2+12x-4=20x+15 | | (8x+16)=(11x-35) | | 3x+13=x+27 | | y²-6y-9=0 | | h/9-1=-3 | | (2x+5)(2x-5)=(3x+7) | | 24-(x+8)=4x-4 | | (12x-30)=(10x-22) | | -(6x-10)=4(-4x-5) | | 78=6m | | 9y-4-5y+3=0 | | -2(-5x-3)=2(7x-9) | | 6x2=9 | | 6x-3x+2x-2=0 | | -4x+3=-3-6x | | 2x+25=6x-3 | | 2x+25=6x+3 | | ×2-5x-6=0 | | 80=2x+30 | | (4D²-4D+1)y=4 | | 9-5x=3x-41 | | 3(m–2)=–2(m–3) | | -1.5+k=8.2+1.5 | | 200=1/2(4x^2) | | z+11=3z-31 | | 5b-2+2=-15 | | 12+2x-x=9x=6 | | 2=-8a+2-7a | | -3(x-4)=2(x+4)-7 | | 1/4(2x-4)-1/4x=5 | | 5-11t7=(5-2t) | | 2/3+y=1/9=7/9 |